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LETTER TO THE EDITOR 

Geometry of force-free fields 

J C Martinez 
Mathematical Science Centre, Ngee Ann Polytechni~,535 Uementi Road, Singapore 2159 

'Received 5 April 1995 

Abstract. A geometric generaliwdon of force-free fields is proposed. Properties of the 
minimum-energy configuration are deduced and its connection with minimal surfaces is shown 
for the simplest case. 

Forty years ago Lust and Schlute [l] introduced the concept of force-free magnetic fields 
(V x B = c B )  to describe large currents and magnetic fields co-existing in matter with no 
force bearing on the material. Since then, there has been a gradual and steady growth in the 
literature on this.subject. Forcefree fields have been used in many different applications 
including the study of solar flares [2], superconductors [3] and plasma confinement 141. 

There is a growing awareness of the utility of geometric generalizations in theoretical 
work; one feels that some useful results could be derived from a geometrically inspired 
treatment of forcefree fields. We will see that there is more than an accidental connection 
between force-free fields and the burgeoning subject of minimal surfaces, a connection that 
does not seem to have been noted previously. 

As is well known, the equilibrium equations describing magnetoh&odynamical fields 
are nonlinear and seemingly intractable. Any geometric input is a welcome means of 
simplifying the equations since they are generally independent of the dynamics. Recently 
topological invariants and topologically-related quantities have been found to be useful in 
obtaining lower bounds on magnetic-field energies [5,6]. This letter presents a framework, 
based on differential forms, with which to formulate the theory of force-free fields. Because 
of its simplicity it gives another perspective into the theory and should encourage others 
to consider the insights gained from the study of minimal surfaces within the context of 
forcefree fields. 

Magnetic fields are divergence-free vector fields [71. We will, therefore, begin by 
considering the divergence free (n - 1) forms a in a (2n - 1) compact manifold M (with 
suitable gauge condition if necessary): 

d'a = 0 (1) 

where d is the exterior derivative and * the Hodge star operator mapping p-forms to 
(2n - 1 - p)-forms [8]. Additionally, we will require that the Lie derivative of a with 
respect to a divergence-free vector field X be exact: 

(2) 
. ,  Lxa = d@ div X = 0. 

Here q5 is in (n - 2)-form, Lx denotes the Lie derivative and we assume that the quantities 
defined are sufficiently continuous. 
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The second condition given above is really a generalization of the frozen-in condition 
for magnetic fields and vortices in fluids [91. For instance, the Euler equation for a zero- 
viscosity incompressible fluid can be written as 

where w is the velocity field, U = vi dz' is the same quantity written as a 1-form, p is 
the pressure, p is the density and B is an external conserved body potential. Similarly, 
an incompressible perfectly conducting fluid obeys the NavierStokes equation in the form 
La,at+vB = 0, where B is the magnetic field. This is essentially the Kelvin-Helmholtz 
theorem for the conservation of vorticity. 

The vector fields Xi form a Lie algebra with respect to Lie brackets because 

L[x,,x;~~ = (Lx;Lx; - L x j L x i ) ~  = d(Lxj@j - Lx;@i) (4) 

and because [Xi, Xi] is divergence free if Xi and Xj satisfy the identity 

div[Xi,XjJ = x i d i v x j  - XjdivXi. (5) 

Defining the n-form B as 

B = da (6) 

we immediately see that L x B  = 0~ which generalizes the Kelvin-Helmholtz theorem 
mentioned above. 

We must consider the implications raised by consistency. If we require that [Xi, Xj] = 
f i j k X k  where the f s are constants, then we find from (4) and (1) that 

Lxt@j - Lx;@i - f i j h  = 0. , (7) 

This is the consistency condition that must be satisfied by the 4;. The coefficients f i j ~  are 
antisymmetric in the first two indices and obey the Jacobi identity 

f i j k h m n  f $ m k f i i n  + f m i k h j i  = 0. (8) 
i 

Next we introduce the energy EB and the Hopf invariant SAS [9]: 

Using (1) and (2) we can verify that 

LXSAB 0 

that is, SAB is invariant under deformations generated by incompressible flows. SAS does 
not depend bn the specific choice of & and describes the helicity of the field. If U denotes 
a Killing field, it is known that LE =~ 'L, so that 

L,EB = 2 B A  L,B. s* 
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The Killing field is divergence free so both SAS and EB are invariant under flows arising 
from U (i.e.,from isometries). 

The field energy attains its critical value when 

d a  = h*oc (12) 

where A is a constant. The constancy of A is forced by (1) and in this case EB = ~ S A B .  
Since, as we will see below, A is real and in general E8 # 0 even when SAS = 0, condition 
(12) corresponds to the minimum energy case [lo]. To derive (12) we consider the quantity 
EB - ASAB which can be written as ad((-y*da - ha) and varied with respect to a. 
(Actually, we may add to the right-hand side of (12) the n-form 'dg which contributes a 
total divergence to the field energy and may then be ignored.) If 'we define 

I =  a A * a  s 
we have the Schwarz inequality SiB  < IEB. The equality holds precisely when (12) is 
satisfied. Since SAS is a topological invariant (12), therefore, imposes the condition for 
minimal energy. 

For the minimum energy case 

Aor = A2a (13) 

where A = *d *d + d*d* is the Laplacian. If we consider a as a sum of (n - 1)-forms then 
(13) is equivalent to Asj = A's' where the si are continuous functions. Takahashi studied 
this equation and he has shown that AZ > 0, and that the si may be viewed as coordinates 
of a sphere Sb-' of radius -/Ill [ll]. Thus, has a constant magnitude, 
i.e. the radius of the sphere. 

The solution of (13) may also be presented in another way. Define f as an (n-2)-form 
which obeys the equations 

d*f = 0 *d*df = h2 f .  (14) 

We introduce the I-form, h = x i  dx' and form the following (n - I)-forms: 

E =df  ' F = *d(fh) G = "dF H = *dG. ( 1 3  

By direct calculation each of these (n- 1)-forms obeys (13). Hence a is a linear combination 
of these forms (the series (15) actually ends with G). By requiring that d a  = A*or and 
d*a = 0 we obtain the result 

a = constant(F + A-%) (15) 

which generalizes the result of Hansen [U]. 

a sum of a product of n I-forms 
The importance of the Hopf invariant can be seen as follows. For simplicity let da be 

.oi:da = fifiw" A . . . A o''. 

The set of characteristic vector fields f, defined by 

i ( f ) d '  = 0 (p = i ~ ,  ..., in) 
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forms a vector subspace of the tangent space of M over smooth functions. Here i(c)o is 
the contraction of o by e. If S is an (n - I)-surface on this subspace then J,a = 0 and 
by Stokes' theorem da = 0 where a-'S is the surface with S as boundary. However, 
the fact that J, a vanishes is not sufficient to guarantee that [a-,s da also vanishes. The 
sufficient and necessary condition is, in fact, that ador = 0. Hence, unless a d a  = 0, it is 
not possible to conshuct homologically trivial surfaces in the space of characteristic vector 
fields. 

Three observations can be made. First, since da = A*a implies that a da  # 0, it follows 
that the minimal energy configurations involves a non-trivial manifold structure. Second, 
when n = 2 the above considerations give the familiar Frobenius theorem for integrability. 
It is not clear whether this holds for higher n values. Third, equation (13) often occurs in 
the theory of harmonic and minimal maps and is, in fact, used as a working definition in 
that context [13]. This leads us to suspect that force-free fields must be related to minimal 
surfaces. We will see below that this is the case at least for n = 2. 

The simplest case is n = 2, i.e. three-dimensional Euclidean space. The @i are zero 
forms which we write as @j = Xy W, where /L are space indices and W, continuous 
functions. Equation (7) demands that a,,W,-a,W, = 0, i.e. W, = a,g. Thus c$~ = i(Xj)dg 
and 

a = d g  (16) 
where g is a continuous function. By (13) a satisfies Aa = A2a and, according to 
Takahashi's theorem, lor1 has constant magnitude. Now the gradient Vg is metrically 
equivalent to dg and we may interpret 

as the normal field of the level surfaces of g. Since by (1) divh = 0, these surface are 
minimal surfaces (i.e. their mean curvature vanishes) [14].- 

A specific example is the magnetic field B = sinkzi +' coskzj. In terms of forms 
this translates to a = ;(sin kzdx + coskzdy) and we verify that da = k*a, d*a = 0 and 
Aa = k2a. (a is not the vector potential of B, it is B in the language of forms.) The 
corresponding function g is g = tan-' x/y where x 2  + y2 = 1 and the minimal surface is 
the helicoid. Another example with n = 2, is provided by the magnetic monopole in S3, 
for which a = dx +cos8 d@. It is well known that this corresponds to the principal bundle 
S3 + ' S 2  and that on S2, da = *a. Sz is the minimal surface (imbedded in S3) and the 
corresponding field has minimum energy with SAS = 1 [9]. 

We have given these two examples, one in R3 and the other in S3, because it is known 
that there cannot exist a compact minimal submanifold in Euclidean space [15]. However, 
when the enveloping manifold is compact a minimal immersion can exist. 

Since force-free fields describe minimal surfaces, it follows ba t  if: is any function in 
three-dimensional space and B the forcefree magnetic field, then 0 = f B  . d a  where d a  
is an element of area of the minimal surface S. Thus, by the divergence theorem 

O =  t B . d a =  V . $ B d V =  V e - B d V  (17) 

where V is the volume enclosed by S. In this context the Hopf invariant is just the helicity 
integral 

L s ,  s, 
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so that a gauge transformation A --f A + Ve induces the change 

H + lV(A+ Vc). B d V  = A .  BdV. (18) 

That is, the helicity integral is also gauge invariant for force-free fields. 
Finally, let us show how a constant of motion can be obtained. We revert back to 

general manifolds. Suppose U is a Killing field in a Euclidean space M. Let EA be a 
set of orthonormal unit (frame) fields assigne& a minimal submanifold immersed in M. 
Consider the equation 

lv 

where f i ~ ~  is the connection defined on the submanifold. The last term on the right-hand 
side vanishes since, if  DE^ represents the connection in M and il the second fundamental 
form, then 

 EA =  DEJA -  EA. EA))  
A A 

A 

= 0. 

The second line in (20) arises due to the fact that CA i l ( E ~ ,  EA) = 0 for minimal surfaces, 
and the third line arises from M being Euclidean. The first term on the right-hand side of 
(19) also vanishes because 

The second term on the right-hand side of (21) is identically zero since il is normal to the 
submanifold, and the first term also vanishes because U is a Killing field. 

Hence 

JA = (U. EA) (22) 

D A J A  = o  (23) 

satisfies 

so J has constant value anywhere on the minimal surface. This result generalizes a similar 
result which is well known for geodesics and which we state: if U is a Killing field and y 
a geodesic then (U, y ’ )  is constant along y [16]. 

It is easy to check for the helicoid why (23) holds since the relevant Killing field 
are translations along and rotations about the helicoid axis: constancy of J is implied by 
symmetry. 

In a recent work, Berger derived lower bounds on the energy of magnetic fields based on 
the twisting number of space curves 161. This work centres on fields which have a helicoidal 
configuration. It is known that a helicoid can be obtained from a catenoid (also a minimal 
surface) by an appropriate bending process. We conjecture that Berger’s bounds apply 
equally well to force-free fields of the catenoid type. Thii conjecture and a generalization 
of the connection between force-free fields and minimal surfaces point to work for the 
future. 

, 
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